Back to Search
Start Over
Deep Learning Based Transmit Power Control in Underlaid Device-to-Device Communication
- Source :
- IEEE Systems Journal; September 2019, Vol. 13 Issue: 3 p2551-2554, 4p
- Publication Year :
- 2019
-
Abstract
- In this paper, a means of transmit power control for underlaid device-to-device (D2D) communication is proposed based on deep learning technology. In the proposed scheme, the transmit power of D2D user equipment (DUE) is autonomously learned via a deep neural network such that the weighted sum rate (WSR) of DUEs can be maximized by considering the interference from cellular user equipment. Unlike conventional transmit power control schemes in which complex optimization problems have to be solved in an iterative manner, which possibly requires long computation time, in our proposed scheme the transmit power can be determined with a relatively low computation time. Through simulations, we confirm that the proposed scheme achieves a sufficiently high WSR with a sufficiently low computation time.
Details
- Language :
- English
- ISSN :
- 19328184
- Volume :
- 13
- Issue :
- 3
- Database :
- Supplemental Index
- Journal :
- IEEE Systems Journal
- Publication Type :
- Periodical
- Accession number :
- ejs50902395
- Full Text :
- https://doi.org/10.1109/JSYST.2018.2870483