Back to Search
Start Over
Effects of Distributed Generation on Voltage Levels in a Radial Distribution Network Without Communication
- Source :
- Journal of Electrochemical Energy Conversion and Storage; December 2010, Vol. 7 Issue: 6 p061011-061011, 1p
- Publication Year :
- 2010
-
Abstract
- The challenges associated with incorporating a large amount of distributed generation (DG), including fuel cells, into a radial distribution feeder are examined using a dynamic MATLAB/SIMULINKā¢ model. Two generic distribution feeder models are used to investigate possible scenarios where voltage problems may occur. Modern inverter topologies make ancillary services, such as on-demand reactive power generation/consumption economical to include, which expands the design space across which DG can function in the distribution system. The simulation platform enables testing of the following local control goals: DG connected with unity power factor, DG and load connected with unity power factor, DG connected with local voltage regulation (LVR), and DG connected with real power curtailment. Both the LVR and curtailment strategies can regulate the voltage of the simple circuit case, but the circuit utilizing a substation with load drop compensation has no universal solution. Even DG with a penetration level around 10% of rated circuit power can cause overvoltage problems with load drop compensation. The real power curtailment control strategy creates the best overall circuit efficiency, while all other control strategies result in low light load efficiency at high DG penetrations. The lack of a universal solution implies that some degree of communication will be needed to reliably install a large amount of DG on a distribution circuit.
Details
- Language :
- English
- ISSN :
- 23816872 and 23816910
- Volume :
- 7
- Issue :
- 6
- Database :
- Supplemental Index
- Journal :
- Journal of Electrochemical Energy Conversion and Storage
- Publication Type :
- Periodical
- Accession number :
- ejs50818175
- Full Text :
- https://doi.org/10.1115/1.4001050