Back to Search Start Over

Systems Modeling of Chemical Hydride Hydrogen Storage Materials for Fuel Cell Applications

Authors :
Brooks, Kriston
Devarakonda, Maruthi
Rassat, Scot
Holladay, Jamie
Source :
Journal of Electrochemical Energy Conversion and Storage; December 2011, Vol. 8 Issue: 6 p061021-061021, 1p
Publication Year :
2011

Abstract

A fixed bed reactor was designed, modeled and simulated for hydrogen storage on-board the vehicle for PEM fuel cell applications. Ammonia borane was selected by DOE’s Hydrogen Storage Engineering Center of Excellence as the initial chemical hydride of study because of its high hydrogen storage capacity (up to ~16% by weight for the release of ~2.5 molar equivalents of hydrogen gas) and its stability under typical ambient conditions. The design evaluated consisted of a tank with eight thermally isolated sections in which H2 flows freely between sections to provide ballast. Heating elements are used to initiate reactions in each section when pressure drops below a specified level in the tank. Reactor models in Excel and COMSOL were developed to demonstrate the proof-of-concept, which was then used to develop systems models in Matlab/Simulink. Experiments and drive cycle simulations showed that the storage system meets thirteen 2010 DOE targets in entirety and the remaining four at greater than 60% of the target.

Details

Language :
English
ISSN :
23816872 and 23816910
Volume :
8
Issue :
6
Database :
Supplemental Index
Journal :
Journal of Electrochemical Energy Conversion and Storage
Publication Type :
Periodical
Accession number :
ejs50818003
Full Text :
https://doi.org/10.1115/1.4004477