Back to Search Start Over

Rabbits possess a serum paraoxonase polymorphism similar to the human Q192R

Authors :
Watson, Catherine E.
Draganov, Dragomir I.
Billecke, Scott S.
Bisgaier, Charles L.
Du, Bert N. La
Source :
Pharmacogenetics; March 2001, Vol. 11 Issue: 2 p123-134, 12p
Publication Year :
2001

Abstract

Serum paraoxonase (PON1) is a high-density lipoprotein (HDL)-associated enzyme that hydrolyses aromatic esters, organophosphates and lactones and can protect low-density lipoprotein (LDL) against oxidation. These properties are influenced by a well-characterized polymorphism (Q192R) in human PON1. We now report the identification and characterization of a phenotypically similar, but genetically distinct polymorphism in rabbit PON1. This polymorphism in rabbits was detected by phenotyping sera obtained from 16 inbred rabbit strains and 20 outbred New Zealand White rabbits by paraoxonase/arylesterase activity. The genetic basis of the rabbit polymorphism was determined by DNA sequencing and found to reside in a region distinct from the human Q192R and M55L polymorphisms. Three variant nucleotides within exon 4 (corresponding to P82S, K93E and S101G) were found to segregate with the observed rabbit PON1 phenotypes (rPON1A and rPON1B). The rPON1A and rPON1B proteins were purified and compared to the two human isoforms (192Q and 192R). The human and rabbit PON1s displayed similar characteristics with respect to physical properties and substrate specificity. However, rPON1A and rPON1B hydrolysed a variety of substrates at different rates. The rPON1A was also at least three-fold more efficient at protecting LDL from oxidation than rPON1B. Our characterization of a rabbit PON1 polymorphism provides useful insights into important functional residues in PON1. In addition, due to the observed similarities between the rabbit and human polymorphisms, the rabbit may serve as a good model to examine the effect of human PON1 polymorphisms in disease development.

Details

Language :
English
ISSN :
0960314X and 1473561X
Volume :
11
Issue :
2
Database :
Supplemental Index
Journal :
Pharmacogenetics
Publication Type :
Periodical
Accession number :
ejs48873626