Back to Search Start Over

The Critical Role of Intrinsic Membrane Oscillations

Authors :
Lee, Sang-Hun
Urbano, Francisco J.
Garcia-Rill, Edgar
Source :
NeuroSignals; April 2019, Vol. 26 Issue: 1 p66-76, 11p
Publication Year :
2019

Abstract

Intrinsic, rhythmic subthreshold oscillations have been described in neurons of regions throughout the brain and have been found to influence the timing of action potentials induced by synaptic inputs. Some oscillations are sodium channel-dependent while others are calcium channel-dependent. These oscillations allow neurons to fire coherently at preferred frequencies and represent the main mechanism for maintaining high frequency network activity, especially in the cortex. Because cortical circuits are incapable of maintaining high frequency activity in the gamma range for prolonged periods, those processes dependent on continuous gamma band activity are subserved by subthreshold oscillations. As such, intrinsic oscillations, coupled with synaptic circuits, are essential to prolonged maintenance of such functions as sensory perception and “binding”, problem solving, memory, waking, and rapid eye movement (REM) sleep.

Details

Language :
English
ISSN :
1424862X and 14248638
Volume :
26
Issue :
1
Database :
Supplemental Index
Journal :
NeuroSignals
Publication Type :
Periodical
Accession number :
ejs46614517
Full Text :
https://doi.org/10.1159/000493900