Back to Search
Start Over
Muscle Tone Facilitation and Inhibition After Orexin-A (Hypocretin-1) Microinjections Into the Medial Medulla
- Source :
- Journal of Neurophysiology; May 2002, Vol. 87 Issue: 5 p2480-2489, 10p
- Publication Year :
- 2002
-
Abstract
- Orexins/hypocretins are synthesized in neurons of the perifornical, dorsomedial, lateral, and posterior hypothalamus. A loss of hypocretin neurons has been found in human narcolepsy, which is characterized by sudden loss of muscle tone, called cataplexy, and sleepiness. The normal functional role of these neurons, however, is unclear. The medioventral medullary region, including gigantocellular reticular nucleus, alpha (GiA) and ventral (GiV) parts, participates in the induction of locomotion and muscle tone facilitation in decerebrate animals and receives moderate orexinergic innervation. In the present study, we have examined the role of orexin-A (OX-A) in muscle tone control using microinjections (50 μM, 0.3 μl) into the GiA and GiV sites in decerebrate rats. OX-A microinjections into GiA sites, previously identified by electrical stimulation as facilitating hindlimb muscle tone bilaterally, produced a bilateral increase of muscle tone in the same muscles. Bilateral lidocaine microinjections (4%, 0.3 μl) into the dorsolateral mesopontine reticular formation decreased muscle rigidity and blocked muscle tone facilitation produced by OX-A microinjections into the GiA sites. The activity of cells related to muscle rigidity, located in the pedunculopontine tegmental nucleus and adjacent reticular formation, was correlated positively with the extent of hindlimb muscle tone facilitation after medullary OX-A microinjections. OX-A microinjections into GiV sites were less effective in muscle tone facilitation, although these sites produced a muscle tone increase during electrical stimulation. In contrast, OX-A microinjections into the gigantocellular nucleus (Gi) sites and dorsal paragigantocellular nucleus (DPGi) sites, previously identified by electrical stimulation as inhibitory points, produced bilateral hindlimb muscle atonia. We propose that the medioventral medullary region is one of the brain stem target for OX-A modulation of muscle tone. Facilitation of muscle tone after OX-A microinjections into this region is linked to activation of intrinsic reticular cells, causing excitation of midbrain and pontine neurons participating in muscle tone facilitation through an ascending pathway. Moreover, our results suggest that OX-A may also regulate the activity of medullary neurons participating in muscle tone suppression. Loss of OX function may, therefore, disturb both muscle tone facilitatory and inhibitory processes at the medullary level.
Details
- Language :
- English
- ISSN :
- 00223077 and 15221598
- Volume :
- 87
- Issue :
- 5
- Database :
- Supplemental Index
- Journal :
- Journal of Neurophysiology
- Publication Type :
- Periodical
- Accession number :
- ejs46253250
- Full Text :
- https://doi.org/10.1152/jn.2002.87.5.2480