Back to Search Start Over

Robust Mesoporous CoMo/γ-Al2O3Catalysts from Cyclodextrin-Based Supramolecular Assemblies for Hydrothermal Processing of Microalgae: Effect of the Preparation Method

Authors :
Bleta, Rudina
Schiavo, Benedetto
Corsaro, Natale
Costa, Paula
Giaconia, Alberto
Interrante, Leonardo
Monflier, Eric
Pipitone, Giuseppe
Ponchel, Anne
Sau, Salvatore
Scialdone, Onofrio
Tilloy, Sébastien
Galia, Alessandro
Source :
ACS Applied Materials & Interfaces; April 2018, Vol. 10 Issue: 15 p12562-12579, 18p
Publication Year :
2018

Abstract

Hydrothermal liquefaction (HTL) is a promising technology for the production of biocrude oil from microalgae. Although this catalyst-free technology is efficient under high-temperature and high-pressure conditions, the biocrude yield and quality can be further improved by using heterogeneous catalysts. The design of robust catalysts that preserve their performance under hydrothermal conditions will be therefore very important in the development of biorefinery technologies. In this work, we describe two different synthetic routes (i.e., impregnation and cyclodextrin-assisted one-pot colloidal approach), for the preparation in aqueous phase of six high surface area CoMo/γ-Al2O3catalysts. Catalytic tests performed on the HTL of Nannochloropsis gaditanamicroalga indicate that solids prepared by the one-pot colloidal approach show higher hydrothermal stability and enhanced biocrude yield with respect to the catalyst-free test. The positive effect of the substitution of the block copolymer Tetronic T90R4 for Pluronic F127 in the preparation procedure was evidenced by diffuse reflectance UV–visible spectroscopy, X-ray diffraction, N2-adsorption–desorption, and H2-temperature-programmed reduction measurements and confirmed by the higher quality of the obtained biocrude, which exhibited lower oxygen content and higher-energy recovery equal to 62.5% of the initial biomass.

Details

Language :
English
ISSN :
19448244
Volume :
10
Issue :
15
Database :
Supplemental Index
Journal :
ACS Applied Materials & Interfaces
Publication Type :
Periodical
Accession number :
ejs45149324
Full Text :
https://doi.org/10.1021/acsami.7b16185