Back to Search
Start Over
Tunable Band Gaps of InxGa1–xN Alloys: From Bulk to Two-Dimensional Limit
- Source :
- The Journal of Physical Chemistry - Part C; March 2018, Vol. 122 Issue: 12 p6930-6942, 13p
- Publication Year :
- 2018
-
Abstract
- Using first-principles calculations combined with a semiempirical van der Waals dispersion correction, we have investigated structural parameters, mixing enthalpies, and band gaps of buckled and planar few-layer InxGa1–xN alloys. We predict that the band gaps of buckled InxGa1–xN alloys with hydrogen passivation can be tuned from 5.6 to 0.7 eV with preservation of direct band gap and well-defined Bloch character, making them promising candidate materials for future light-emitting applications. Unlike that in their bulk counterparts, the phase separation could be suppressed in these two-dimensional systems because of reduced geometrical constraints. The disordered planar thin films undergo severe lattice distortion, nearly losing the Bloch character for valence bands, whereas the ordered planar ones maintain the Bloch character yet with the highest mixing enthalpies.
Details
- Language :
- English
- ISSN :
- 19327447 and 19327455
- Volume :
- 122
- Issue :
- 12
- Database :
- Supplemental Index
- Journal :
- The Journal of Physical Chemistry - Part C
- Publication Type :
- Periodical
- Accession number :
- ejs44944302
- Full Text :
- https://doi.org/10.1021/acs.jpcc.7b12401