Back to Search Start Over

Multiplexing molecular tension sensors reveals piconewton force gradient across talin-1

Authors :
Ringer, Pia
Weißl, Andreas
Cost, Anna-Lena
Freikamp, Andrea
Sabass, Benedikt
Mehlich, Alexander
Tramier, Marc
Rief, Matthias
Grashoff, Carsten
Source :
Nature Methods; November 2017, Vol. 14 Issue: 11 p1090-1096, 7p
Publication Year :
2017

Abstract

Förster resonance energy transfer (FRET)-based tension sensor modules (TSMs) are available for investigating how distinct proteins bear mechanical forces in cells. Yet, forces in the single piconewton (pN) regime remain difficult to resolve, and tools for multiplexed tension sensing are lacking. Here, we report the generation and calibration of a genetically encoded, FRET-based biosensor called FL-TSM, which is characterized by a near-digital force response and increased sensitivity at 3–5 pN. In addition, we present a method allowing the simultaneous evaluation of coexpressed tension sensor constructs using two-color fluorescence lifetime microscopy. Finally, we introduce a procedure to calculate the fraction of mechanically engaged molecules within cells. Application of these techniques to new talin biosensors reveals an intramolecular tension gradient across talin-1 that is established upon integrin-mediated cell adhesion. The tension gradient is actomyosin- and vinculin-dependent and sensitive to the rigidity of the extracellular environment.

Details

Language :
English
ISSN :
15487091 and 15487105
Volume :
14
Issue :
11
Database :
Supplemental Index
Journal :
Nature Methods
Publication Type :
Periodical
Accession number :
ejs43689183
Full Text :
https://doi.org/10.1038/nmeth.4431