Back to Search Start Over

Experimental quantum Hamiltonian learning

Authors :
Wang, Jianwei
Paesani, Stefano
Santagati, Raffaele
Knauer, Sebastian
Gentile, Antonio A.
Wiebe, Nathan
Petruzzella, Maurangelo
O’Brien, Jeremy L.
Rarity, John G.
Laing, Anthony
Thompson, Mark G.
Source :
Nature Physics; June 2017, Vol. 13 Issue: 6 p551-555, 5p
Publication Year :
2017

Abstract

The efficient characterization of quantum systems, the verification of the operations of quantum devices and the validation of underpinning physical models, are central challenges for quantum technologies and fundamental physics. The computational cost of such studies could be improved by machine learning enhanced by quantum simulators. Here we interface two different quantum systems through a classical channel—a silicon-photonics quantum simulator and an electron spin in a diamond nitrogen–vacancy centre—and use the former to learn the Hamiltonian of the latter via Bayesian inference. We learn the salient Hamiltonian parameter with an uncertainty of approximately 10−5. Furthermore, an observed saturation in the learning algorithm suggests deficiencies in the underlying Hamiltonian model, which we exploit to further improve the model. We implement an interactive version of the protocol and experimentally show its ability to characterize the operation of the quantum photonic device.

Details

Language :
English
ISSN :
17452473 and 17452481
Volume :
13
Issue :
6
Database :
Supplemental Index
Journal :
Nature Physics
Publication Type :
Periodical
Accession number :
ejs42585036
Full Text :
https://doi.org/10.1038/nphys4074