Back to Search Start Over

Main Pulmonary Arterial Wall Shear Stress Correlates with Invasive Hemodynamics and Stiffness in Pulmonary Hypertension

Authors :
Schäfer, Michal
Kheyfets, Vitaly O.
Schroeder, Joyce D.
Dunning, Jamie
Shandas, Robin
Buckner, J. Kern
Browning, James
Hertzberg, Jean
Hunter, Kendall S.
Fenster, Brett E.
Source :
Pulmonary Circulation; March 2016, Vol. 6 Issue: 1 p37-45, 9p
Publication Year :
2016

Abstract

Pulmonary hypertension (PH) is associated with proximal pulmonary arterial remodeling characterized by increased vessel diameter, wall thickening, and stiffness. In vivo assessment of wall shear stress (WSS) may provide insights into the relationships between pulmonary hemodynamics and vascular remodeling. We investigated the relationship between main pulmonary artery (MPA) WSS and pulmonary hemodynamics as well as markers of stiffness. As part of a prospective study, 17 PH patients and 5 controls underwent same-day four-dimensional flow cardiac magnetic resonance imaging (4-D CMR) and right heart catheterization. Streamwise velocity profiles were generated in the cross-sectional MPA in 45° increments from velocity vector fields determined by 4-D CMR. WSS was calculated as the product of hematocrit-dependent viscosity and shear rate generated from the spatial gradient of the velocity profiles. In-plane average MPA WSS was significantly decreased in the PH cohort compared with that in controls (0.18 ± 0.07 vs. 0.32 ± 0.08 N/m2; P =0.01). In-plane MPA WSS showed strong inverse correlations with multiple hemodynamic indices, including pulmonary resistance (ρ = –0.74, P <0.001), mean pulmonary pressure (ρ = –0.64, P =0.006), and elastance (ρ = –0.70, P <0.001). In addition, MPA WSS had significant associations with markers of stiffness, including capacitance (ρ =0.67, P <0.001), distensibility (ρ =0.52, P =0.013), and elastic modulus (ρ = –0.54, P =0.01). In conclusion, MPA WSS is decreased in PH and is significantly associated with invasive hemodynamic indices and markers of stiffness. 4-D CMR-based assessment of WSS may represent a novel methodology to study blood-vessel wall interactions in PH.

Details

Language :
English
ISSN :
20458932 and 20458940
Volume :
6
Issue :
1
Database :
Supplemental Index
Journal :
Pulmonary Circulation
Publication Type :
Periodical
Accession number :
ejs42084529
Full Text :
https://doi.org/10.1086/685024