Back to Search
Start Over
Biochar built soil carbon over a decade by stabilizing rhizodeposits
- Source :
- Nature Climate Change; April 2017, Vol. 7 Issue: 5 p371-376, 6p
- Publication Year :
- 2017
-
Abstract
- Biochar can increase the stable C content of soil. However, studies on the longer-term role of plant–soil–biochar interactions and the consequent changes to native soil organic carbon (SOC) are lacking. Periodic 13CO2pulse labelling of ryegrass was used to monitor belowground C allocation, SOC priming, and stabilization of root-derived C for a 15-month period—commencing 8.2 years after biochar (Eucalyptus saligna, 550 °C) was amended into a subtropical ferralsol. We found that field-aged biochar enhanced the belowground recovery of new root-derived C (13C) by 20%, and facilitated negative rhizosphere priming (it slowed SOC mineralization by 5.5%, that is, 46 g CO2-C m−2yr−1). Retention of root-derived 13C in the stable organo-mineral fraction (<53 μm) was also increased (6%, P < 0.05). Through synchrotron-based spectroscopic analysis of bulk soil, field-aged biochar and microaggregates (<250 μm), we demonstrate that biochar accelerates the formation of microaggregates via organo-mineral interactions, resulting in the stabilization and accumulation of SOC in a rhodic ferralsol.
Details
- Language :
- English
- ISSN :
- 1758678X and 17586798
- Volume :
- 7
- Issue :
- 5
- Database :
- Supplemental Index
- Journal :
- Nature Climate Change
- Publication Type :
- Periodical
- Accession number :
- ejs41825161
- Full Text :
- https://doi.org/10.1038/nclimate3276