Back to Search Start Over

SEDS proteins are a widespread family of bacterial cell wall polymerases

Authors :
Meeske, Alexander J.
Riley, Eammon P.
Robins, William P.
Uehara, Tsuyoshi
Mekalanos, John J.
Kahne, Daniel
Walker, Suzanne
Kruse, Andrew C.
Bernhardt, Thomas G.
Rudner, David Z.
Source :
Nature; September 2016, Vol. 537 Issue: 7622 p634-638, 5p
Publication Year :
2016

Abstract

Elongation of rod-shaped bacteria is mediated by a dynamic peptidoglycan-synthetizing machinery called the Rod complex. Here we report that, in Bacillus subtilis, this complex is functional in the absence of all known peptidoglycan polymerases. Cells lacking these enzymes survive by inducing an envelope stress response that increases the expression of RodA, a widely conserved core component of the Rod complex. RodA is a member of the SEDS (shape, elongation, division and sporulation) family of proteins, which have essential but ill-defined roles in cell wall biogenesis during growth, division and sporulation. Our genetic and biochemical analyses indicate that SEDS proteins constitute a family of peptidoglycan polymerases. Thus, B. subtilis and probably most bacteria use two distinct classes of polymerase to synthesize their exoskeleton. Our findings indicate that SEDS family proteins are core cell wall synthases of the cell elongation and division machinery, and represent attractive targets for antibiotic development.

Details

Language :
English
ISSN :
00280836 and 14764687
Volume :
537
Issue :
7622
Database :
Supplemental Index
Journal :
Nature
Publication Type :
Periodical
Accession number :
ejs40107006
Full Text :
https://doi.org/10.1038/nature19331