Back to Search
Start Over
Intracellular analysis of trigeminal motoneuron rhythmical activity during stimulation of pontomedullary reticular formation in anesthetized guinea pig.
- Source :
- Journal of Neurophysiology; December 1989, Vol. 62 Issue: 6 p1225-1236, 12p
- Publication Year :
- 1989
-
Abstract
- 1. The effects of repetitive stimulation of the nucleus pontis caudalis and nucleus gigantocellularis (PnC-Gi) of the reticular formation on jaw opener and closer motoneurons were examined. The PnC-Gi was stimulated at 75 Hz at current intensities less than 90 microA. 2. Rhythmically occurring, long-duration, depolarizing membrane potentials in jaw opener motoneurons [excitatory masticatory drive potential (E-MDP)] and long-duration hyperpolarizing membrane potentials [inhibitory masticatory drive potentials (I-MDP)] in jaw closer motoneurons were evoked by 40-Hz repetitive masticatory cortex stimulation. These potentials were completely suppressed by PnC-Gi stimulation. PnC-Gi stimulation also suppressed the short-duration, stimulus-locked depolarizations [excitatory postsynaptic potentials (EPSPs)] in jaw opener motoneurons and short-duration, stimulus-locked hyperpolarizations [inhibitory postsynaptic potentials (IPSPs)] in jaw closer motoneurons, evoked by the same repetitive cortical stimulation. 3. Short pulse train (3 pulses; 500 Hz) stimulation of the masticatory area of the cortex in the absence of rhythmical jaw movements activated the short-latency paucisynaptic corticotrigeminal pathways and evoked short-duration EPSPs and IPSPs in jaw opener and closer motoneurons, respectively. The same PnC-Gi stimulation that completely suppressed rhythmical MDPs, and stimulus-locked PSPs evoked by repetitive stimulation to the masticatory area of the cortex, produced an average reduction in PSP amplitude of 22 and 17% in jaw closer and opener motoneurons, respectively. 4. PnC-Gi stimulation produced minimal effects on the amplitude of the antidromic digastric field potential or on the intracellularly recorded antidromic digastric action potential. Moreover, PnC-Gi stimulation had little effect on jaw opener or jaw closer motoneuron membrane resting potentials in the absence of rhythmical jaw movements (RJMs). PnC-Gi stimulation produced variable effects on conductance pulses elicited in jaw opener and closer motoneurons in the absence of RJMs. 5. These results indicate that the powerful suppression of cortically evoked MDPs in opener and closer motoneurons during PnC-Gi stimulation is most likely not a result of postsynaptic inhibition of trigeminal motoneurons. It is proposed that this suppression is a result of suppression of activity in neurons responsible for masticatory rhythm generation.
Details
- Language :
- English
- ISSN :
- 00223077 and 15221598
- Volume :
- 62
- Issue :
- 6
- Database :
- Supplemental Index
- Journal :
- Journal of Neurophysiology
- Publication Type :
- Periodical
- Accession number :
- ejs39706195