Back to Search Start Over

Radius Problems for Ratios of Janowski Starlike Functions with Their Derivatives

Authors :
Verma, Shelly
Ravichandran, V.
Source :
Bulletin of the Malaysian Mathematical Sciences Society; April 2017, Vol. 40 Issue: 2 p819-840, 22p
Publication Year :
2017

Abstract

Let $$-1 \le B<A \le 1$$ -1≤B<A≤1 and $$F= f/f'$$ F=f/f′ for normalized locally univalent functions f. For analytic function pon the open unit disc $$\mathbb {D}$$ D with $$p(0)=1$$ p(0)=1 and satisfying the subordination $$p(z) \prec (1+A z)/(1+B z)$$ p(z)≺(1+Az)/(1+Bz) , we determine bounds for $$|p(z)- z p'(z)-1|$$ |p(z)-zp′(z)-1| and $$|z p'(z)|/{{\mathrm{Re\,}}}p(z)$$ |zp′(z)|/Rep(z) . As an application, we investigate the radius problem for Fto satisfy $$|F'(z)(z/F(z))^2-1| <1$$ |F′(z)(z/F(z))2-1|<1 , where fis a Janowski starlike function and the radius of univalence of Fwhen fis a starlike function of order $$\alpha $$ α . Also, we have discussed the radius of starlikeness of Fwhen fis a Janowski starlike function with fixed second coefficient. Apart from the radius problems, we give the sharp coefficient bounds of Fwhen fis a Janowski starlike function and a sufficient condition for starlikeness of fwhen Fis a Janowski starlike function. Our results generalize some of the earlier known results.

Details

Language :
English
ISSN :
01266705 and 21804206
Volume :
40
Issue :
2
Database :
Supplemental Index
Journal :
Bulletin of the Malaysian Mathematical Sciences Society
Publication Type :
Periodical
Accession number :
ejs38626332
Full Text :
https://doi.org/10.1007/s40840-016-0363-x