Back to Search
Start Over
Radius Problems for Ratios of Janowski Starlike Functions with Their Derivatives
- Source :
- Bulletin of the Malaysian Mathematical Sciences Society; April 2017, Vol. 40 Issue: 2 p819-840, 22p
- Publication Year :
- 2017
-
Abstract
- Let $$-1 \le B<A \le 1$$ -1≤B<A≤1 and $$F= f/f'$$ F=f/f′ for normalized locally univalent functions f. For analytic function pon the open unit disc $$\mathbb {D}$$ D with $$p(0)=1$$ p(0)=1 and satisfying the subordination $$p(z) \prec (1+A z)/(1+B z)$$ p(z)≺(1+Az)/(1+Bz) , we determine bounds for $$|p(z)- z p'(z)-1|$$ |p(z)-zp′(z)-1| and $$|z p'(z)|/{{\mathrm{Re\,}}}p(z)$$ |zp′(z)|/Rep(z) . As an application, we investigate the radius problem for Fto satisfy $$|F'(z)(z/F(z))^2-1| <1$$ |F′(z)(z/F(z))2-1|<1 , where fis a Janowski starlike function and the radius of univalence of Fwhen fis a starlike function of order $$\alpha $$ α . Also, we have discussed the radius of starlikeness of Fwhen fis a Janowski starlike function with fixed second coefficient. Apart from the radius problems, we give the sharp coefficient bounds of Fwhen fis a Janowski starlike function and a sufficient condition for starlikeness of fwhen Fis a Janowski starlike function. Our results generalize some of the earlier known results.
Details
- Language :
- English
- ISSN :
- 01266705 and 21804206
- Volume :
- 40
- Issue :
- 2
- Database :
- Supplemental Index
- Journal :
- Bulletin of the Malaysian Mathematical Sciences Society
- Publication Type :
- Periodical
- Accession number :
- ejs38626332
- Full Text :
- https://doi.org/10.1007/s40840-016-0363-x