Back to Search Start Over

The peptidergic control circuit for sighing

Authors :
Li, Peng
Janczewski, Wiktor A.
Yackle, Kevin
Kam, Kaiwen
Pagliardini, Silvia
Krasnow, Mark A.
Feldman, Jack L.
Source :
Nature; February 2016, Vol. 530 Issue: 7590 p293-297, 5p
Publication Year :
2016

Abstract

Sighs are long, deep breaths expressing sadness, relief or exhaustion. Sighs also occur spontaneously every few minutes to reinflate alveoli, and sighing increases under hypoxia, stress, and certain psychiatric conditions. Here we use molecular, genetic, and pharmacologic approaches to identify a peptidergic sigh control circuit in murine brain. Small neural subpopulations in a key breathing control centre, the retrotrapezoid nucleus/parafacial respiratory group (RTN/pFRG), express bombesin-like neuropeptide genes neuromedin B (Nmb) or gastrin-releasing peptide (Grp). These project to the preBötzinger Complex (preBötC), the respiratory rhythm generator, which expresses NMB and GRP receptors in overlapping subsets of ~200 neurons. Introducing either neuropeptide into preBötC or onto preBötC slices, induced sighing or in vitro sigh activity, whereas elimination or inhibition of either receptor reduced basal sighing, and inhibition of both abolished it. Ablating receptor-expressing neurons eliminated basal and hypoxia-induced sighing, but left breathing otherwise intact initially. We propose that these overlapping peptidergic pathways comprise the core of a sigh control circuit that integrates physiological and perhaps emotional input to transform normal breaths into sighs.

Details

Language :
English
ISSN :
00280836 and 14764687
Volume :
530
Issue :
7590
Database :
Supplemental Index
Journal :
Nature
Publication Type :
Periodical
Accession number :
ejs38101973
Full Text :
https://doi.org/10.1038/nature16964