Back to Search Start Over

Surface Effects Under Visible Irradiation and Heat Treatment on the Phase Stability of γ-Fe2O3Nanoparticles and γ-Fe2O3−SiO2Core–Shell Nanostructures

Authors :
Stagi, Luigi
De Toro, Jose A.
Ardu, Andrea
Cannas, Carla
Casu, Alberto
Lee, Su Seong
Ricci, Pier Carlo
Source :
The Journal of Physical Chemistry - Part C; February 2014, Vol. 118 Issue: 5 p2857-2866, 10p
Publication Year :
2014

Abstract

The structural evolution of γ-Fe2O3(maghemite) in bare nanoparticles and in core/shell γ-Fe2O3/SiO2systems was studied as a function of laser irradiation and heat treatment by the combined use of Raman spectroscopy, transmission electron microscopy, X-ray diffraction. The study was addressed to deepen understanding the driving mechanisms at the basis of the maghemite to hematite (α-Fe2O3) phase transition and to understand the possible correlation with surface/defects states. In the bare system, phase transformation was obtained with very low beam density powers (less than 2 mW at 632.8 nm focalized with a conventional 10× microscope objective) and the threshold for transition further decreases in vacuum conditions, suggesting that the phase transformation can be achieved even without thermal assistance. On the contrary, phase transformation cannot be obtained by light irradiation in a γ-Fe2O3/SiO2core/shell system, but it can be induced by heat treatment at very high temperature (1100 °C). Fe2O3nanoparticles at high temperature can diffuse inside the silica matrix forming aggregates with the α phase and increased size. The key role of the particle surface is discussed and a physical mechanism for the nucleation of hematite crystallites from the bonding of neighboring maghemite nanoparticles through hydrate defect states is proposed.

Details

Language :
English
ISSN :
19327447 and 19327455
Volume :
118
Issue :
5
Database :
Supplemental Index
Journal :
The Journal of Physical Chemistry - Part C
Publication Type :
Periodical
Accession number :
ejs31944239
Full Text :
https://doi.org/10.1021/jp4115833