Back to Search Start Over

Hierarchical Self-Assembly and Optical Disassembly for Controlled Switching of Magnetoferritin Nanoparticle Magnetism

Authors :
Kostiainen, Mauri A.
Ceci, Pierpaolo
Fornara, Manuela
Hiekkataipale, Panu
Kasyutich, Oksana
Nolte, Roeland J. M.
Cornelissen, Jeroen J. L. M.
Desautels, Ryan D.
van Lierop, Johan
Source :
ACS Nano; August 2011, Vol. 5 Issue: 8 p6394-6402, 9p
Publication Year :
2011

Abstract

Protein cages such as ferritin and viral capsids are interesting building blocks for nanotechnology due to their monodisperse structure and ability to encapsulate various functional moieties. Here we show that recombinant ferritin protein cages encapsulating Fe3O4–γ-Fe2O3iron oxide (magnetoferritin) nanoparticles and photodegradable Newkome-type dendrons self-assemble into micrometer-sized complexes with a face-centered-cubic (fcc) superstructure and a lattice constant of 13.1 nm. The magnetic properties of the magnetoferritin particles are affected directly by the hierarchical organization. Magnetoferritin nanoparticles dispersed in water exhibit typical magnetism of single domain noninteracting nanoparticles; however, the same nanoparticles organized into fcc superstructures show clearly the effects of the altered magnetostatic (e.g., dipole–dipole) interactions by exhibiting, for example, different hysteresis of the field-dependent magnetization. The magnetoferritin–dendron assemblies can be efficiently disassembled by a short optical stimulus resulting in release of free magnetoferritin particles. After the triggered release the nanomagnetic properties of the pristine magnetoferritin nanoparticles are regained.

Details

Language :
English
ISSN :
19360851 and 1936086X
Volume :
5
Issue :
8
Database :
Supplemental Index
Journal :
ACS Nano
Publication Type :
Periodical
Accession number :
ejs25431960
Full Text :
https://doi.org/10.1021/nn201571y