Back to Search Start Over

Reducing the rank of $(A-\lambda B)$

Authors :
Thompson, Gerald L.
Weil, Roman L.
Source :
Proceedings of the American Mathematical Society; 1970, Vol. 26 Issue: 4 p548-554, 7p
Publication Year :
1970

Abstract

The rank of the $ n \times n$ $ (A - \lambda I)$ $ n - J(\lambda )$ is an eigenvalue occurring in $ J(\lambda ) \geqq 0$. In our principal theorem we derive an analogous expression for the rank of $ (A - \lambda B)$ $ m \times n$ 0,\lambda$ --> $ J(\lambda ) > 0,\lambda $ $ (A - \lambda I)$ $ m \times n$ $ (A - \lambda B)$ $ P(\lambda ,A,B)$ $ (A - \lambda B)$ relative to <IMG WIDTH="22" HEIGHT="20" ALIGN="BOTTOM" BORDER="0" SRC="images/img17.gif" ALT="$ B$"> and justify that name.

Details

Language :
English
ISSN :
00029939 and 10886826
Volume :
26
Issue :
4
Database :
Supplemental Index
Journal :
Proceedings of the American Mathematical Society
Publication Type :
Periodical
Accession number :
ejs21909185