Back to Search
Start Over
Reducing the rank of $(A-\lambda B)$
- Source :
- Proceedings of the American Mathematical Society; 1970, Vol. 26 Issue: 4 p548-554, 7p
- Publication Year :
- 1970
-
Abstract
- The rank of the $ n \times n$ $ (A - \lambda I)$ $ n - J(\lambda )$ is an eigenvalue occurring in $ J(\lambda ) \geqq 0$. In our principal theorem we derive an analogous expression for the rank of $ (A - \lambda B)$ $ m \times n$ 0,\lambda$ --> $ J(\lambda ) > 0,\lambda $ $ (A - \lambda I)$ $ m \times n$ $ (A - \lambda B)$ $ P(\lambda ,A,B)$ $ (A - \lambda B)$ relative to <IMG WIDTH="22" HEIGHT="20" ALIGN="BOTTOM" BORDER="0" SRC="images/img17.gif" ALT="$ B$"> and justify that name.
Details
- Language :
- English
- ISSN :
- 00029939 and 10886826
- Volume :
- 26
- Issue :
- 4
- Database :
- Supplemental Index
- Journal :
- Proceedings of the American Mathematical Society
- Publication Type :
- Periodical
- Accession number :
- ejs21909185