Back to Search Start Over

Physisorbed, Chemisorbed, and Oxidized CO on Highly Active Cu−CeO2(111)

Authors :
Yang, Zongxian
He, Bingling
Lu, Zhansheng
Hermansson, Kersti
Source :
The Journal of Physical Chemistry - Part C; 20240101, Issue: Preprints
Publication Year :
2024

Abstract

With the use of the DFT+U method, the properties of Cu adsorbed on the stoichiometric CeO2(111) surface, Cu-doped CeO2(111) (denoted as Cu0.08Ce0.92O2) surface, and CO oxidation on the stoichiometric Cu0.08Ce0.92O2surface are studied systematically. It is found that (i) Cu is stable both as an adsorbed atom on the surface and as dopant in the surface region. Cu adsorbed at the surface is Cu(+I) while Cu as a dopant atom is Cu(+II). (ii) The Cu dopant facilitates O-vacancy formation considerably, while Cu adsorption on the stoichiometric CeO2(111) surface may suppress oxygen vacancy formation. (iii) Physisorbed CO, physisorbed CO2, as well as chemisorbed CO (carbonate) species are observed on the Cu-doped CeO2(111) surface, in contrast, on the clean ceria(111) surface, only physisorbed CO was previously observed. C−O distances, adsorption energies, and surface-induced C−O vibrational frequency shifts were used to characterize these species.

Details

Language :
English
ISSN :
19327447 and 19327455
Issue :
Preprints
Database :
Supplemental Index
Journal :
The Journal of Physical Chemistry - Part C
Publication Type :
Periodical
Accession number :
ejs20717610
Full Text :
https://doi.org/10.1021/jp909174u