Back to Search
Start Over
Distinct Sums Modulo <e1>n</e1> and Tree Embeddings
- Source :
- Combinatorics, Probability and Computing; January 2002, Vol. 11 Issue: 1 p35-42, 8p
- Publication Year :
- 2002
-
Abstract
- In this paper we are concerned with the following conjecture. <e2>Conjecture.</e2> For any positive integers <e1>n</e1> and <e1>k</e1> satisfying <e1>k</e1> &lt; <e1>n</e1>, and any sequence <e1>a</e1><inf>1</inf>, <e1>a</e1><inf>2</inf>, <e1>a</e1><inf><e1>k</e1></inf> of not necessarily distinct elements of <e1>Z</e1><inf><e1>n</e1></inf>, there exists a permutation π ∈ <e1>S</e1><inf><e1>k</e1></inf> such that the elements <e1>a</e1><inf>π</inf>(<e1>i</e1>)+<e1>i</e1> are all distinct modulo <e1>n</e1>. We prove this conjecture when 2<e1>k</e1> <e1>n</e1>+1. We then apply this result to tree embeddings. Specifically, we show that, if <e1>T</e1> is a tree with <e1>n</e1> edges and radius <e1>r</e1>, then <e1>T</e1> decomposes <e1>K</e1><inf><e1>t</e1></inf> for some <e1>t</e1> 32(2<e1>r</e1>+4)<e1>n</e1><superscript>2</superscript>+1.
Details
- Language :
- English
- ISSN :
- 09635483 and 14692163
- Volume :
- 11
- Issue :
- 1
- Database :
- Supplemental Index
- Journal :
- Combinatorics, Probability and Computing
- Publication Type :
- Periodical
- Accession number :
- ejs2021780
- Full Text :
- https://doi.org/10.1017/S0963548301004874