Back to Search Start Over

Distinct Sums Modulo <e1>n</e1> and Tree Embeddings

Authors :
KÉZDY, ANDRÉ E.
SNEVILY, HUNTER S.
Source :
Combinatorics, Probability and Computing; January 2002, Vol. 11 Issue: 1 p35-42, 8p
Publication Year :
2002

Abstract

In this paper we are concerned with the following conjecture. &lt;e2&gt;Conjecture.&lt;/e2&gt; For any positive integers &lt;e1&gt;n&lt;/e1&gt; and &lt;e1&gt;k&lt;/e1&gt; satisfying &lt;e1&gt;k&lt;/e1&gt; &amp;lt; &lt;e1&gt;n&lt;/e1&gt;, and any sequence &lt;e1&gt;a&lt;/e1&gt;&lt;inf&gt;1&lt;/inf&gt;, &lt;e1&gt;a&lt;/e1&gt;&lt;inf&gt;2&lt;/inf&gt;, … &lt;e1&gt;a&lt;/e1&gt;&lt;inf&gt;&lt;e1&gt;k&lt;/e1&gt;&lt;/inf&gt; of not necessarily distinct elements of &lt;e1&gt;Z&lt;/e1&gt;&lt;inf&gt;&lt;e1&gt;n&lt;/e1&gt;&lt;/inf&gt;, there exists a permutation π ∈ &lt;e1&gt;S&lt;/e1&gt;&lt;inf&gt;&lt;e1&gt;k&lt;/e1&gt;&lt;/inf&gt; such that the elements &lt;e1&gt;a&lt;/e1&gt;&lt;inf&gt;π&lt;/inf&gt;(&lt;e1&gt;i&lt;/e1&gt;)+&lt;e1&gt;i&lt;/e1&gt; are all distinct modulo &lt;e1&gt;n&lt;/e1&gt;. We prove this conjecture when 2&lt;e1&gt;k&lt;/e1&gt;  &lt;e1&gt;n&lt;/e1&gt;+1. We then apply this result to tree embeddings. Specifically, we show that, if &lt;e1&gt;T&lt;/e1&gt; is a tree with &lt;e1&gt;n&lt;/e1&gt; edges and radius &lt;e1&gt;r&lt;/e1&gt;, then &lt;e1&gt;T&lt;/e1&gt; decomposes &lt;e1&gt;K&lt;/e1&gt;&lt;inf&gt;&lt;e1&gt;t&lt;/e1&gt;&lt;/inf&gt; for some &lt;e1&gt;t&lt;/e1&gt;  32(2&lt;e1&gt;r&lt;/e1&gt;+4)&lt;e1&gt;n&lt;/e1&gt;&lt;superscript&gt;2&lt;/superscript&gt;+1.

Details

Language :
English
ISSN :
09635483 and 14692163
Volume :
11
Issue :
1
Database :
Supplemental Index
Journal :
Combinatorics, Probability and Computing
Publication Type :
Periodical
Accession number :
ejs2021780
Full Text :
https://doi.org/10.1017/S0963548301004874