Back to Search Start Over

A Ruggedized Design Approach to Reduce Maintenance and Enhance the Efficiency of High and Intermediate Pressure Steam Turbines

Authors :
Conway, L.
Martin, H. F.
Stock, A. L.
Vaccaro, F. R.
Source :
Journal of Engineering for Gas Turbines and Power; October 1989, Vol. 111 Issue: 4 p619-624, 6p
Publication Year :
1989

Abstract

The industry issues of minimizing maintenance and maintaining turbine performance with operating time have been systematically addressed using creative approaches to control wear, erosion, vibration, and distortion of critical High-Pressure (HP) and Intermediate-Pressure (IP) Steam Turbine components. The important components were identified utilizing a new technique to analyze turbine high maintenance areas. New technology advances were utilized to understand the causes of the maintenance, and to reduce or eliminate it. The technology advances discussed in the paper are in the area of three-dimensional computer programs, materials, coatings, modern computer-aided drafting, and verification testing. These, in conjunction with new creative design approaches for the critical components, have resulted in a ruggedized HP and HP/IP turbine design, which is retrofittable in today’s operating units. Of special interest are the steps taken to give rapid and individually customized attention from design through manufacturing to each unique situation and utility. Among the benefits achieved are up to a 50 percent overall reduction in maintenance, up to 120 Btu/kWh (30 kcal/kWh) reduction in heat rate, and an increased cyclic duty capability for the ruggedized turbines.

Details

Language :
English
ISSN :
07424795 and 15288919
Volume :
111
Issue :
4
Database :
Supplemental Index
Journal :
Journal of Engineering for Gas Turbines and Power
Publication Type :
Periodical
Accession number :
ejs19851714
Full Text :
https://doi.org/10.1115/1.3240298