Back to Search Start Over

Generation and comparative analysis of approximately 3.3 Mb of mouse genomic sequence orthologous to the region of human chromosome 7q11.23 implicated in Williams syndrome.

Authors :
DeSilva, Udaya
Elnitski, Laura
Idol, Jacquelyn R
Doyle, Johannah L
Gan, Weiniu
Thomas, James W
Schwartz, Scott
Dietrich, Nicole L
Beckstrom-Sternberg, Stephen M
McDowell, Jennifer C
Blakesley, Robert W
Bouffard, Gerard G
Thomas, Pamela J
Touchman, Jeffrey W
Miller, Webb
Green, Eric D
Source :
Genome Research; January 2002, Vol. 12 Issue: 1 p3-15, 13p
Publication Year :
2002

Abstract

Williams syndrome is a complex developmental disorder that results from the heterozygous deletion of a approximately 1.6-Mb segment of human chromosome 7q11.23. These deletions are mediated by large (approximately 300 kb) duplicated blocks of DNA of near-identical sequence. Previously, we showed that the orthologous region of the mouse genome is devoid of such duplicated segments. Here, we extend our studies to include the generation of approximately 3.3 Mb of genomic sequence from the mouse Williams syndrome region, of which just over 1.4 Mb is finished to high accuracy. Comparative analyses of the mouse and human sequences within and immediately flanking the interval commonly deleted in Williams syndrome have facilitated the identification of nine previously unreported genes, provided detailed sequence-based information regarding 30 genes residing in the region, and revealed a number of potentially interesting conserved noncoding sequences. Finally, to facilitate comparative sequence analysis, we implemented several enhancements to the program, including the addition of links from annotated features within a generated percent-identity plot to specific records in public databases. Taken together, the results reported here provide an important comparative sequence resource that should catalyze additional studies of Williams syndrome, including those that aim to characterize genes within the commonly deleted interval and to develop mouse models of the disorder.

Details

Language :
English
ISSN :
10889051 and 15495469
Volume :
12
Issue :
1
Database :
Supplemental Index
Journal :
Genome Research
Publication Type :
Periodical
Accession number :
ejs19031090
Full Text :
https://doi.org/10.1101/gr.214802