Back to Search Start Over

Orthogonal (<TOGGLE>g, f</TOGGLE>)-factorizations in networks

Authors :
Lam, Peter Che Bor
Liu, Guizhen
Li, Guojun
Shiu, Wai Chee
Source :
Networks; July 2000, Vol. 35 Issue: 4 p274-278, 5p
Publication Year :
2000

Abstract

Let G = (V, E) be a graph and let g and f be two integer-valued functions defined on V such that k ≤ g(x) ≤ f(x) for all x ∈ V. Let H&lt;INF&gt;1&lt;/INF&gt;, H&lt;INF&gt;2&lt;/INF&gt;, …, H&lt;INF&gt;k&lt;/INF&gt; be subgraphs of G such that |E(H&lt;INF&gt;i&lt;/INF&gt;)| = m, 1 ≤ i ≤ k, and V(H&lt;INF&gt;i&lt;/INF&gt;) ∩ V(H&lt;INF&gt;j&lt;/INF&gt;) = 0 when i ≠ j. In this paper, it is proved that every (mg + m − 1, mf − m + 1)-graph G has a (g, f)-factorization orthogonal to H&lt;INF&gt;i&lt;/INF&gt; for i = 1, 2, …, k and shown that there are polynomial-time algorithms to find the desired (g, f)-factorizations. &#169; 2000 John Wiley &amp; Sons, Inc.

Details

Language :
English
ISSN :
00283045 and 10970037
Volume :
35
Issue :
4
Database :
Supplemental Index
Journal :
Networks
Publication Type :
Periodical
Accession number :
ejs1793778
Full Text :
https://doi.org/10.1002/1097-0037(200007)35:4<274::AID-NET6>3.0.CO;2-6