Back to Search
Start Over
Sonochemically Assisted Thermal Decomposition of Alane N,N-Dimethylethylamine with Titanium (IV) Isopropoxide in the Presence of Oleic Acid to Yield Air-Stable and Size-Selective Aluminum Core−Shell Nanoparticles
- Source :
- The Journal of Physical Chemistry - Part C; January 2009, Vol. 113 Issue: 2 p500-503, 4p
- Publication Year :
- 2009
-
Abstract
- Using sonochemistry to provide the thermal energy and mixing, we demonstrate the ability to synthesize air-stable aluminum nanoparticles of two different size distributions from the titanium-catalyzed thermal decomposition of alane. Characterization data indicate the presence of spherical face-centered-cubic aluminum nanoparticles with average sizes of either 5 or 30 nm that are capped with an organic shell. The average size of the nanoparticles correlates with the concentration of the passivation agent oleic acid, where a higher concentration results in smaller particles. Thermal analysis data demonstrates that at elevated temperatures (>550 °C), these particles react via a typical aluminum oxidation mechanism, whereas at low temperatures (<550 °C), the behavior of these particles is unique and directly related to the presence of the organic shell.
Details
- Language :
- English
- ISSN :
- 19327447 and 19327455
- Volume :
- 113
- Issue :
- 2
- Database :
- Supplemental Index
- Journal :
- The Journal of Physical Chemistry - Part C
- Publication Type :
- Periodical
- Accession number :
- ejs17691411
- Full Text :
- https://doi.org/10.1021/jp809295e