Back to Search Start Over

Geochemistry and Rb-sr geochronology of associated proterozoic peralkaline and subalkaline anorogenic granites from Labrador

Authors :
Collerson, Kenneth D.
Source :
Contributions to Mineralogy and Petrology; December 1982, Vol. 81 Issue: 2 p126-147, 22p
Publication Year :
1982

Abstract

Anorogenic granites of middle to late Proterozoic age in the Davis Inlet — Flowers Bay area of Labrador are subdivided on the basis of petrology and geochemistry into three coeval suites. Two of these are high-temperature anhydrous hypersolvus granites: a peralkaline aegirine-sodic-calcic to sodic amphibole-bearing suite and a non-alkaline fayalite-pyroxene-bearing suite. The third is a group of non-alkaline subsolvus hornblende-biotite-bearing granites. Associated with the hypersolvus peralkaline suite is a group of genetically related syenites and quartz syenites. The granites cut ca. 3,000 Ma old Archaean gneisses as well as Elsonian layered basic intrusions of the Nain Complex. One of these, a crudely layered mass which ranges in composition from gabbro to diorite and monzonite, appears to be related to the syenites. The peralkaline granites and some of the syenites are extremely enriched in the high field-strength elements such as Y, Zr, Nd, as well as Rb, Ga and Zn, and have low abundances of Ba, Sr and most of the transition elements. In contrast, the non-alkaline hypersolvus and subsolvus granites do not show the same degree of enrichment. Concentration of the highly charged cations in the peralkaline suite is believed to be the result of halogen-rich fluid activity during fractionation of the magma. The sodic evolution trend in the peralkaline suite is reflected mineralogically by the development of aegirine and aegirine-hedenbergite solid solutions, and by a spectacular amphibole compositional range from katophorite through winchite, richterite, riebeckite to arfvedsonite and ferro eckermannite. Accessory phases which are ubiquitous in these rocks include aenigmatite, astrophyllite, fluorite, monazite and zircon. The non-alkaline hypersolvus granites typically contain iron-rich phases such as fayalite, eulite, ferrosilite-hedenbergite, and annite rich biotite. In the subsolvus granites, amphiboles range in composition from edenite through common hornblende to actinolite and also coexist with annite-rich biotite.

Details

Language :
English
ISSN :
00107999 and 14320967
Volume :
81
Issue :
2
Database :
Supplemental Index
Journal :
Contributions to Mineralogy and Petrology
Publication Type :
Periodical
Accession number :
ejs15557844
Full Text :
https://doi.org/10.1007/BF00372050