Back to Search
Start Over
Multiplicative posets
- Source :
- Order; December 1991, Vol. 8 Issue: 4 p349-358, 10p
- Publication Year :
- 1991
-
Abstract
- A functionf from the posetP to the posetQ is a strict morphism if for allx, y ? P withx<y we havef(x)<f(y). If there is such a strict morphism fromP toQ we writeP ? Q, otherwise we writeP $$\not \to $$ Q. We say a posetM is multiplicative if for any posetsP, Q withP $$\not \to $$ M andQ $$\not \to $$ M we haveP ×Q $$\not \to $$ M. (Here (p<subscript>1</subscript>,q<subscript>1</subscript>)<(p<subscript>2</subscript>,q<subscript>2</subscript>) if and only ifp<subscript>1</subscript><p<subscript>2</subscript> andq<subscript>1</subscript><q<subscript>2</subscript>.) This paper proves that well-founded trees with height =? are multiplicative posets.
Details
- Language :
- English
- ISSN :
- 01678094 and 15729273
- Volume :
- 8
- Issue :
- 4
- Database :
- Supplemental Index
- Journal :
- Order
- Publication Type :
- Periodical
- Accession number :
- ejs14900426
- Full Text :
- https://doi.org/10.1007/BF00571185