Back to Search Start Over

Multiplicative posets

Authors :
Sauer, N. W.
Zhu, Xuding
Source :
Order; December 1991, Vol. 8 Issue: 4 p349-358, 10p
Publication Year :
1991

Abstract

A functionf from the posetP to the posetQ is a strict morphism if for allx, y ? P withx<y we havef(x)<f(y). If there is such a strict morphism fromP toQ we writeP ? Q, otherwise we writeP $$\not \to $$ Q. We say a posetM is multiplicative if for any posetsP, Q withP $$\not \to $$ M andQ $$\not \to $$ M we haveP ×Q $$\not \to $$ M. (Here (p<subscript>1</subscript>,q<subscript>1</subscript>)<(p<subscript>2</subscript>,q<subscript>2</subscript>) if and only ifp<subscript>1</subscript><p<subscript>2</subscript> andq<subscript>1</subscript><q<subscript>2</subscript>.) This paper proves that well-founded trees with height =? are multiplicative posets.

Details

Language :
English
ISSN :
01678094 and 15729273
Volume :
8
Issue :
4
Database :
Supplemental Index
Journal :
Order
Publication Type :
Periodical
Accession number :
ejs14900426
Full Text :
https://doi.org/10.1007/BF00571185