Back to Search
Start Over
Differential operators defining a solution of an elliptic-type equation
- Source :
- Journal of Mathematical Sciences; October 2000, Vol. 102 Issue: 1 p3719-3726, 8p
- Publication Year :
- 2000
-
Abstract
- Abstract: We construct differential operators Kg(z), Lg(z), $$Kg(z),\;Lg(z),\,\,M\overline {f(z)} ,$$ , and $$N\overline {f(z)} $$ such that they map arbitrary holomorphic functions in a simply connected domain D in the complex plane z=x+iy into regular solutions of the equation <table><tbody><tr><td> $$W_{ \approx \bar \approx } + A(z,\bar z)W_{\bar \approx } + B(z,z)W = 0.$$ </td></tr></tbody></table> We give examples of applications of the constructed differential operators to a solution of the main boundary-value problems of mathematical physics. Bibliography: 1 title.
Details
- Language :
- English
- ISSN :
- 10723374 and 15738795
- Volume :
- 102
- Issue :
- 1
- Database :
- Supplemental Index
- Journal :
- Journal of Mathematical Sciences
- Publication Type :
- Periodical
- Accession number :
- ejs12447127
- Full Text :
- https://doi.org/10.1007/BF02680223