Back to Search
Start Over
Intracellular PO(2) decreases with increasing stimulation frequency in contracting single Xenopus muscle fibers.
- Source :
- Journal of Applied Physiology; August 2001, Vol. 91 Issue: 2 p632-6, 5p
- Publication Year :
- 2001
-
Abstract
- There is currently some controversy regarding the manner in which skeletal muscle intracellular PO(2) changes with work intensity. Therefore, this study investigated the relationship between intracellular PO(2) and stimulation frequency in intact, isolated, single skeletal muscle fibers. Single, living muscle fibers (n = 7) were microdissected from the lumbrical muscles of Xenopus and injected with the oxygen-sensitive probe palladium-meso-tetra(4-carboxyphenyl)porphine (0.5 mM). Fibers were mounted with platinum clips to a force transducer in a chamber, which was continuously perfused with Ringer solution (pH = 7.0) at a PO(2) of ~30 Torr. Fibers were then stimulated sequentially for 3 min, followed by a 3-min rest, at each of five contraction frequencies (0.15, 0.2, 0.25, 0.33, and 0.5 Hz), in a random order, using tetanic contractions. Resting intracellular PO(2) averaged 31.2 +/- 0.9 Torr. During steady-state stimulation, intracellular PO(2) declined to 21.2 +/- 2.3, 17.1 +/- 2.4, 15.3 +/- 1.9, 9.8 +/- 2.0, and 5.8 +/- 1.4 Torr for 0.15, 0.2, 0.25, 0.33, and 0.5-Hz stimulation, respectively. Significant fatigue, as defined by a decrease in force to <50% of the initial force, occurred only at the highest (0.5 Hz) stimulation frequency in five of the cells and at 0.33 Hz in the other two. Regression analysis demonstrated that there was a significant (P < 0.0001, r = 0.82) negative correlation between intracellular PO(2) and contraction frequency in these isolated, single cells. The linear decrease in intracellular PO(2) with stimulation frequency, and thus energy demand, suggests that a fall in intracellular PO(2) correlates with increased oxygen uptake in these single contracting cells.
Details
- Language :
- English
- ISSN :
- 87507587 and 15221601
- Volume :
- 91
- Issue :
- 2
- Database :
- Supplemental Index
- Journal :
- Journal of Applied Physiology
- Publication Type :
- Periodical
- Accession number :
- ejs1224666