Back to Search Start Over

Interaction of Ozone and Water Vapor with Spark Discharge Soot Aerosol Particles Coated with Benzo[a]pyrene:  O<INF>3</INF> and H<INF>2</INF>O Adsorption, Benzo[a]pyrene Degradation, and Atmospheric Implications

Authors :
Poschl, U.
Letzel, T.
Schauer, C.
Niessner, R.
Source :
The Journal of Physical Chemistry - Part A; April 2001, Vol. 105 Issue: 16 p4029-4041, 13p
Publication Year :
2001

Abstract

The interaction of ozone and water vapor with spark discharge soot particles coated with the five-ring polycyclic aromatic hydrocarbon benzo[a]pyrene (BaP) has been investigated in aerosol flow tube experiments at ambient temperature and pressure (296 K, 1 atm). The investigated range of ozone volume mixing ratio (VMR) and relative humidity (RH) was 0−1 ppm and 0−25%, respectively. The observed gas-phase ozone losses and pseudo-first-order BaP decay rate coefficients exhibited Langmuir-type dependencies on gas-phase ozone concentration and were reduced in the presence of water vapor, which indicates rapid, reversible and competitive adsorption of O&lt;INF&gt;3&lt;/INF&gt; and H&lt;INF&gt;2&lt;/INF&gt;O on the particles followed by a slower surface reaction between adsorbed O&lt;INF&gt;3&lt;/INF&gt; and BaP. At low ozone VMR and RH, the half-life of surface BaP molecules was found to be shorter than previously reported (~ 5 min at 30 ppb O&lt;INF&gt;3&lt;/INF&gt; under dry conditions). At higher RH and for multilayer BaP surface coverage, however, a strong increase of BaP half-life was observed and can be attributed to competitive H&lt;INF&gt;2&lt;/INF&gt;O adsorption and to surface/bulk shielding effects, respectively. From four independent sets of ozone loss and BaP decay measurement data the following parameters have been derived:  O&lt;INF&gt;3&lt;/INF&gt; and H&lt;INF&gt;2&lt;/INF&gt;O Langmuir adsorption equilibrium constants K&lt;INF&gt;O&lt;/INF&gt;&lt;INF&gt;&lt;/INF&gt;&lt;INFINF&gt;3&lt;/INFINF&gt; = (2.8 &#177; 0.2) &#215; 10&lt;SUP&gt;-13&lt;/SUP&gt; cm&lt;SUP&gt;3&lt;/SUP&gt; and K&lt;INF&gt;H&lt;/INF&gt;&lt;INF&gt;&lt;/INF&gt;&lt;INFINF&gt;2&lt;/INFINF&gt;&lt;INF&gt;O&lt;/INF&gt; = (2.1 &#177; 0.4) &#215; 10&lt;SUP&gt;-17&lt;/SUP&gt; cm&lt;SUP&gt;3&lt;/SUP&gt;, maximum pseudo-first-order BaP decay rate coefficient k&lt;INF&gt;1,4&lt;/INF&gt; = (0.015 &#177; 0.001) s&lt;SUP&gt;-1&lt;/SUP&gt;, adsorption site surface concentration [SS]&lt;INF&gt;S&lt;/INF&gt; = (5.7 &#177; 1.7) &#215; 10&lt;SUP&gt;14&lt;/SUP&gt; cm&lt;SUP&gt;-2&lt;/SUP&gt;. On the basis of these values, a second-order BaP−O&lt;INF&gt;3&lt;/INF&gt; surface reaction rate coefficient k&lt;INF&gt;2,s&lt;/INF&gt; = (2.6 &#177; 0.8) &#215; 10&lt;SUP&gt;-17&lt;/SUP&gt; cm&lt;SUP&gt;2&lt;/SUP&gt; s&lt;SUP&gt;-1&lt;/SUP&gt; can be calculated, and estimates for the mean surface residence times and adsorption enthalpies of O&lt;INF&gt;3&lt;/INF&gt; and H&lt;INF&gt;2&lt;/INF&gt;O have been derived:  τ&lt;INF&gt;O&lt;/INF&gt;&lt;INF&gt;&lt;/INF&gt;&lt;INFINF&gt;3&lt;/INFINF&gt; ≈ 5−18 s; τ&lt;INF&gt;H&lt;/INF&gt;&lt;INF&gt;&lt;/INF&gt;&lt;INFINF&gt;2&lt;/INFINF&gt;&lt;INF&gt;O&lt;/INF&gt; ≈ 3 ms, ΔH&lt;INF&gt;ads,O&lt;/INF&gt;&lt;INF&gt;&lt;/INF&gt;&lt;INFINF&gt;3&lt;/INFINF&gt; ≈ −(80−90) kJ mol&lt;SUP&gt;-1&lt;/SUP&gt;, ΔH&lt;INF&gt;ads,H&lt;/INF&gt;&lt;INF&gt;&lt;/INF&gt;&lt;INFINF&gt;2&lt;/INFINF&gt;&lt;INF&gt;O&lt;/INF&gt; ≈ −50 kJ mol&lt;SUP&gt;-1&lt;/SUP&gt;. The results and their atmospheric implications are discussed in view of related studies.

Details

Language :
English
ISSN :
10895639 and 15205215
Volume :
105
Issue :
16
Database :
Supplemental Index
Journal :
The Journal of Physical Chemistry - Part A
Publication Type :
Periodical
Accession number :
ejs1127580