Back to Search Start Over

Experimental-Based Redesigns for Trailing Edge Film Cooling of Gas Turbine Blades.

Authors :
Benson, Michael
Yapa, Sayuri D.
Elkins, Chris
Eaton, John K.
Source :
Journal of Turbomachinery; Jul2013, Vol. 135 Issue 4, p1-9, 9p
Publication Year :
2013

Abstract

Magnetic resonance imaging experiments have provided the three-dimensional mean concentration and three component mean velocity field for a typical trailing edge film-cooling cutback geometry built into a conventional uncambered airfoil. This geometry is typical of modern aircraft engines and includes three dimensional slot jets separated by tapered lands. Previous analysis of these data identified the critical mean flow structures that contribute to rapid mixing and low effectiveness in the fully turbulent flow. Three new trailing edge geometries were designed to modify the large scale mean flow struc-tures responsible for suiface effectiveness degradation. One modification called the Dol-phin Nose attempted to weaken strong vortex flows by reducing three dimensionality near the slot breakout. This design changed the flow structure but resulted in minimal improvement in the surface effectiveness. Two other designs called the Shield and Rounded Shield changed the land planform and added an overhanging land edge while maintaining the same breakout surface. These designs substantially modified the vortex structure and improved the suiface effectiveness by as much as 30%. Improvements included superior coolant uniformity on the breakout surface which reduces potential thermal stresses. The utilization of the time averaged data from combined magnetic reso-nance velocimetry (MRV) and concentration (MRC) experiments for designing improved trailing edge breakout film cooling is demonstrated. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
0889504X
Volume :
135
Issue :
4
Database :
Supplemental Index
Journal :
Journal of Turbomachinery
Publication Type :
Academic Journal
Accession number :
89869159
Full Text :
https://doi.org/10.1115/1.4007601