Back to Search Start Over

Using a spatiotemporal climate model to assess population-level Douglas-fir growth sensitivity to climate change across large climatic gradients in British Columbia, Canada.

Authors :
Griesbauer, Hardy P.
Green, D. Scott
O’Neill, Gregory A.
Source :
Forest Ecology & Management; Feb2011, Vol. 261 Issue 3, p589-600, 12p
Publication Year :
2011

Abstract

Abstract: Effective adaptation of forest management practices to climate change will require a good understanding of the ecological and climatic factors influencing tree sensitivities and responses to climate. Using tree-ring data collected from 33 stands of mature interior Douglas-fir (Pseudotsuga menziesii var. glauca) spanning a wide climatic range in British Columbia (BC), Canada, we present an approach combining high-resolution spatiotemporal climate data with traditional dendroecological analyses to quantify relationships between population climate–growth sensitivity and provenance (i.e., seed-source origin) climate. Key results showed that Douglas-fir climate–growth sensitivities were strongly linked to provenance climate and varied in coherent patterns across climatic gradients. Climate–growth sensitivities and responses were sometimes opposite between provenances from disparate climates. Perhaps most importantly, our results showed that Douglas-fir productivity across most of its range was sensitive to moisture limitations, and this sensitivity increased strongly with decreasing provenance mean annual precipitation and increasing heat-moisture index. Using geographic information systems, we visualize the link between provenance mean annual precipitation and climatic sensitivity of Douglas-fir across BC to identify “high risk” populations. By understanding the link between biological responses and climate, forest managers may be able to spatially identify sensitive populations using spatiotemporal climate data. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
03781127
Volume :
261
Issue :
3
Database :
Supplemental Index
Journal :
Forest Ecology & Management
Publication Type :
Academic Journal
Accession number :
57371233
Full Text :
https://doi.org/10.1016/j.foreco.2010.11.012