Back to Search Start Over

A Deterministic Solver to the Boltzmann-Poisson System Including Quantization Effects for Silicon-MOSFETs.

Authors :
Bock, Hans-Georg
de Hoog, Frank
Friedman, Avner
Gupta, Arvind
Pulleyblank, William R.
Rusten, Torgeir
Santosa, Fadil
Tornberg, Anna-Karin
Capasso, Vincenzo
Mattheij, Robert
Neunzert, Helmut
Scherzer, Otmar
Bonilla, Luis L.
Moscoso, Miguel
Platero, Gloria
Vega, Jose M.
Galler, M.
Schürrer, F.
Source :
Progress in Industrial Mathematics at ECMI 2006; 2008, p531-536, 6p
Publication Year :
2008

Abstract

We present a deterministic solver to the Boltzmann-Poisson system for simulating the electron transport in silicon MOSFETs. This system consists of the Boltzmann transport equations (BTEs) for free electrons and for the twodimensional electron gas (2DEG) formed at the Si/SiO2 interface. Moreover, the Poisson equation is coupled to the BTEs. Eigenenergies and wave functions of the 2DEG are dynamically calculated from the Schrödinger-Poisson system. Numerical studies prove the applicability and the efficiency of the proposed numerical technique for simulating ultrasmall semiconductor devices. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISBNs :
9783540719915
Database :
Supplemental Index
Journal :
Progress in Industrial Mathematics at ECMI 2006
Publication Type :
Book
Accession number :
34003450
Full Text :
https://doi.org/10.1007/978-3-540-71992-2_84