Back to Search Start Over

Variation in canopy structure, light and soil nutrition across elevation of a Sri Lankan tropical rain forest.

Authors :
Ediriweera, Sisira
Singhakumara, B.M.P.
Ashton, Mark S.
Source :
Forest Ecology & Management; Sep2008, Vol. 256 Issue 6, p1339-1349, 11p
Publication Year :
2008

Abstract

Abstract: Mixed dipterocarp forests are perhaps the single most important rain forest type in the wet tropics. Only a few studies have purposefully examined differences in resource availability across mixed dipterocarp forest landscapes by simply measuring the abiotic variables of light, soil nutrition and soil water availability in relation to forest structure. We sought to directly measure the environment of canopy gaps across elevation and geology—from lowland mixed dipterocarp forest (100m amsl) to lower montane dipterocarp forest (1200m amsl) in southwest Sri Lanka. Middle elevation gap sites (300–900m amsl) were subdivided into valley, mid-slope and ridge topographic positions. Eighteen natural disturbances all of which were canopy openings caused by tree fall, were randomly selected within primary rain forest that ranged across 100–1200m elevation. Plots were placed in gap centers and in adjacent understories and measurements taken of forest structure (basal area, canopy height, canopy cover index, CCI), shade (light sensors—photosynthetically active radiation [PAR], canopy hemispherical photographs—global site factor [GSF]) and soil nutrition (pH, exchangeable Al, K, Mg and Ca; Total N; and plant available P). Soil moisture was measured at bi-weekly intervals for five years across middle elevation sites only (300–900m amsl). Stand basal area, mean canopy height, and canopy cover index all declined with increase in elevation. Understory PAR and GSF decreased with increases in canopy height, basal area and CCI. Size of canopy opening decreased with increase in elevation, but PAR and GSF increased. Valley sites had significantly greater levels of mean percent soil water content as compared to mid-slope and ridge sites of middle elevation sites. However, at the onset of the southwest monsoons in May all sites were similar. Differences were most pronounced during the dry season (December–April). No differences in soil moisture content could be found between gap and understory microsites. K and Ca in gap centers and adjacent forest understories increased with increase in elevation and change in associated geology. pH increased and Al decreased with elevation and associated geology but only for forest understory conditions. Results demonstrate strong differentiation in soil and light resources with elevation that appears related to size of tree-fall disturbance, stature of the forest, topographic position and underlying geology and soil-weathering environment. This suggests that forest management and conservation practices need to develop and tailor techniques and treatments (silviculture) to the forest that emulate and/or account for change in elevation, geology and topographic position. Further studies are needed to identify which are the primary underlying mechanisms (e.g. temperature, wind, soil nutrients, soil moisture availability) defining change in forest structure across elevation. [Copyright &y& Elsevier]

Details

Language :
English
ISSN :
03781127
Volume :
256
Issue :
6
Database :
Supplemental Index
Journal :
Forest Ecology & Management
Publication Type :
Academic Journal
Accession number :
33995702
Full Text :
https://doi.org/10.1016/j.foreco.2008.06.035