Back to Search Start Over

Image of a Jacobi Field.

Authors :
Gohberg, I.
Alpay, D.
Arazy, J.
Atzmon, A.
Ball, J. A.
Ben-Artzi, A.
Bercovici, H.
Böttcher, A.
Clancey, K.
Coburn, L. A.
Curto, R. E.
Davidson, K. R.
Douglas, R. G.
Dijksma, A.
Dym, H.
Fuhrmann, P. A.
Gramsch, B.
Helton, J. A.
Kaashoek, M. A.
Kaper, H. G.
Source :
Recent Advances in Matrix & Operator Theory; 2008, p47-62, 16p
Publication Year :
2008

Abstract

Consider the two Hilbert spaces H− and T−. Let K+: H− → T- be a bounded operator. Consider a measure ρ on H-. Denote by ρK the image of the measure ρ under K+. This paper aims to study the measure ρK assuming ρ to be the spectral measure of a Jacobi field. We present a family of operators whose spectral measure equals ρK. We state an analogue of the Wiener-Itô decomposition for ρK. Finally, we illustrate our constructions by offering a few examples and exploring a relatively transparent special case. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISBNs :
9783764385385
Database :
Supplemental Index
Journal :
Recent Advances in Matrix & Operator Theory
Publication Type :
Book
Accession number :
33757891
Full Text :
https://doi.org/10.1007/978-3-7643-8539-2_4