Back to Search Start Over

Non-Singular Canonical Variables.

Authors :
Burton, W. B.
Kuijpers, J. M. E.
Bertola, F.
Cassinelli, J. P.
Cesarsky, C. J.
Ehrenfreund, P.
Engvold, O.
Heck, A.
Kaspi, V. M.
Murdin, P. G.
Pacini, F.
Radhakrishnan, V.
Shu, F. H.
Somov, B. V.
Sunyaev, R. A.
Van Den Heuvel, E. P. J.
Van Der Laan, H.
Ferraz-Mello, Sylvio
Source :
Canonical Perturbation Theories; 2007, p161-180, 20p
Publication Year :
2007

Abstract

The actions Ji defined by the phase integrals Ji = 1/2π ∮ pidqi may become singular. The simplest example is given by the actions of a Hamiltonian depending on the squares of the momenta. In this case, pi is proportional to $$ \dot q_i $$ and, as a consequence, the integral ⊂ pidqi is proportional to ⊂ $$ \int {\dot q_i^2 } dt $$ dt and, thus, sign definite. In other words, the integration path is always circulated in the same direction and the sign of Ji may not be reversed (Fig. 7.1). Consequently, the equations of motion in this variable are singular at Ji = 0. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISBNs :
9780387389004
Database :
Supplemental Index
Journal :
Canonical Perturbation Theories
Publication Type :
Book
Accession number :
33257209
Full Text :
https://doi.org/10.1007/978-0-387-38905-9_7