Back to Search
Start Over
Pseudojump Operators and $\Pi^0_1$ Classes.
- Source :
- Computation & Logic in the Real World; 2007, p146-151, 6p
- Publication Year :
- 2007
-
Abstract
- For a pseudojump operator VX and a $\Pi^0_1$ class P, we consider properties of the set {VX: X ∈ P}. We show that there always exists X ∈ P with $V^X \leq_T {\mathbf 0'}$ and that if P is Medvedev complete, then there exists X ∈ P with $ V^X \equiv_T {\mathbf 0'}$. We examine the consequences when VX is Turing incomparable with VY for X ≠ Y in P and when $W_e^X = W_e^Y$ for all X,Y ∈ P. Finally, we give a characterization of the jump in terms of $\Pi^0_1$ classes. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISBNs :
- 9783540730002
- Database :
- Supplemental Index
- Journal :
- Computation & Logic in the Real World
- Publication Type :
- Book
- Accession number :
- 33191441
- Full Text :
- https://doi.org/10.1007/978-3-540-73001-9_15