Back to Search Start Over

Weyl Transforms, Heat Kernels, Green Functions and Riemann Zeta Functions on Compact Lie Groups.

Authors :
Gohberg, I.
Alpay, D.
Arazy, J.
Atzmon, A.
Ball, J. A.
Ben-Artzi, A.
Bercovici, H.
Böttcher, A.
Clancey, K.
Coburn, L. A.
Curto, R. E.
Davidson, K. R.
Douglas, R. G.
Dijksma, A.
Dym, H.
Fuhrmann, P. A.
Gramsch, B.
Helton, J. A.
Kaashoek, M. A.
Kaper, H. G.
Source :
Modern Trends in Pseudo-Differential Operators; 2007, p67-85, 19p
Publication Year :
2007

Abstract

The Plancherel formula and the inversion formula for Weyl transforms on compact and Hausdorff groups are given. A formula expressing the relationships of the wavelet constant, the degree of the irreducible and unitary representation and the volume of an arbitrary compact and Hausdorff group is derived. The role of the Weyl transforms in the derivation of the formulas for the heat kernels of Laplacians on compact Lie groups is explicated. The Green functions and the Riemann zeta functions of Laplacians on compact Lie groups are constructed using the corresponding heat kernels. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISBNs :
9783764380977
Database :
Supplemental Index
Journal :
Modern Trends in Pseudo-Differential Operators
Publication Type :
Book
Accession number :
33103219
Full Text :
https://doi.org/10.1007/978-3-7643-8116-5_4