Back to Search Start Over

Analytic and Classical Families. Stability.

Authors :
Gohberg, I.
Alpay, D.
Arazy, J.
Atzmon, A.
Ball, J. A.
Ben-Artzi, A.
Bercovici, H.
Böttcher, A.
Clancey, K.
Coburn, L. A.
Curto, R. E.
Davidson, K. R.
Douglas, R. G.
Dijksma, A.
Dym, H.
Fuhrmann, P. A.
Gramsch, B.
Helton, J. A.
Kaashoek, M. A.
Kaper, H. G.
Source :
Algebraic Multiplicity of Eigenvalues of Linear Operators; 2007, p209-223, 15p
Publication Year :
2007

Abstract

This chapter focuses attention on the analytic operator families. After studying some universal spectral properties of these families, this chapter deals with the classical families $$ \mathfrak{L}^A $$ of the form 8.1$$ \begin{array}{*{20}c} {\mathfrak{L}^A \left( \lambda \right): = \lambda I_U - A,} & {\lambda \in \mathbb{K}} \\ \end{array} , $$ for a given A ∈$$ A \in \mathcal{L} $$(U), in order to show that, in this particular case, the classic concepts of algebraic ascent and multiplicity equal the generalized concepts introduced in the previous four chapters. Consequently, the algebraic multiplicity analyzed in this book, from a series of different perspectives, is indeed a generalization of the classic concept of algebraic multiplicity. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISBNs :
9783764384005
Database :
Supplemental Index
Journal :
Algebraic Multiplicity of Eigenvalues of Linear Operators
Publication Type :
Book
Accession number :
33100988
Full Text :
https://doi.org/10.1007/978-3-7643-8401-2_8