Back to Search Start Over

On the Kernel of Some One-dimensional Singular Integral Operators with Shift.

Authors :
Gohberg, I.
Alpay, D.
Arazy, J.
Atzmon, A.
Ball, J. A.
Ben-Artzi, A.
Bercovici, H.
Böttcher, A.
Clancey, K.
Coburn, L. A.
Curto, R. E.
Davidson, K. R.
Douglas, R. G.
Dijksma, A.
Dym, H.
Fuhrmann, P. A.
Gramsch, B.
Helton, J. A.
Kaashoek, M. A.
Kaper, H. G.
Source :
Extended Field of Operator Theory; 2007, p245-257, 13p
Publication Year :
2007

Abstract

An estimate for the dimension of the kernel of the singular integral operator with shift $$ \left( {I + \sum\limits_{j = 1}^n {a_j (t)U^j } } \right)P_ + + P_ - :L_2 (\mathbb{R}) \to L_2 (\mathbb{R}) $$ is obtained, where P± are the Cauchy projectors, (U ψ)(t) = ψ(t+h), h ∈ ℝ+, is the shift operator and aj(t) are continuous functions on the one point compactification of ℝ. The roots of the polynomial $$ 1 + \sum\limits_{j = 1}^n {a_j (\infty )\eta ^j } $$ are assumed to belong all simultaneously either to the interior of the unit circle or to its exterior. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISBNs :
9783764379797
Database :
Supplemental Index
Journal :
Extended Field of Operator Theory
Publication Type :
Book
Accession number :
33097718
Full Text :
https://doi.org/10.1007/978-3-7643-7980-3_12