Back to Search Start Over

Finite Sections of Band-dominated Operators with Almost Periodic Coefficients.

Authors :
Gohberg, I.
Alpay, D.
Arazy, J.
Atzmon, A.
Ball, J. A.
Ben-Artzi, A.
Bercovici, H.
Böttcher, A.
Clancey, K.
Coburn, L. A.
Curto, R. E.
Davidson, K. R.
Douglas, R. G.
Dijksma, A.
Dym, H.
Fuhrmann, P. A.
Gramsch, B.
Helton, J. A.
Kaashoek, M. A.
Kaper, H. G.
Source :
Modern Operator Theory & Applications; 2007, p205-228, 24p
Publication Year :
2007

Abstract

We consider the sequence of the finite sections RnARn of a band-dominated operator A on l2(ℤ) with almost periodic coefficients. Our main result says that if the compressions of A onto ℤ+ and ℤ− are invertible, then there is a distinguished subsequence of (RnARn) which is stable. Moreover, this subsequence proves to be fractal, which allows us to establish the convergence in the Hausdorff metric of the singular values and pseudoeigenvalues of the finite section matrices. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISBNs :
9783764377366
Database :
Supplemental Index
Journal :
Modern Operator Theory & Applications
Publication Type :
Book
Accession number :
33090287
Full Text :
https://doi.org/10.1007/978-3-7643-7737-3_12