Back to Search Start Over

Periodic solutions and associated limit cycle for the generalised Chazy equation.

Authors :
Beig, R.
Ehlers, J.
Frisch, U.
Hepp, K.
Jaffe, R. L.
Kippenhahn, R.
Ojima, I.
Weidenmüller, H. A.
Wess, J.
Zittartz, J.
Beiglböck, W.
Eisenächer, M.
Leach, P. G. L.
Bouquet, S. E.
Rouet, J.-L.
Fijalkow, E.
Géronimi, Claude
Feix, Marc R.
Leach, Peter G. L.
Source :
Dynamical Systems, Plasmas & Gravitation; 1999, p327-335, 9p
Publication Year :
1999

Abstract

We study the generalised Chazy equation, $$\dddot x + x^q \ddot x + kx^{q - 1} \dot x^2 = 0$$ , which is characterised by the symmetries of time translation and rescaling. For a large class of initial conditions numerical computations reveal the asymptotic appearance of periodic solutions for k=q+1. These solutions are identical after rescaling and, in this sense, exhibit the property of a limit cycle in the three dimensional phase space. The periodic solutions are related to a conventional limit cycle of a class of second order ordinary differential equations which are connected to the existence of a first integral of the generalised Chazy equation. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISBNs :
9783540654674
Database :
Supplemental Index
Journal :
Dynamical Systems, Plasmas & Gravitation
Publication Type :
Book
Accession number :
33038805
Full Text :
https://doi.org/10.1007/BFb0105938