Back to Search Start Over

Online Support Vector Machines with Vectors Sieving Method.

Authors :
Wang, Jun
Liao, Xiaofeng
Yi, Zhang
Gan, Liangzhi
Sun, Zonghai
Sun, Youxian
Source :
Advances in Neural Networks - ISNN 2005 (9783540259121); 2005, p837-842, 6p
Publication Year :
2005

Abstract

Support Vector Machines are finding application in pattern recognition, regression estimation, and operator inversion. To extend the using range, people have always been trying their best in finding online algorithms. But the Support Vector Machines are sensitive only to the extreme values and not to the distribution of the whole data. Ordinary algorithm can not predict which value will be sensitive and has to deal with all the data once. This paper introduces an algorithm that selects promising vectors from given vectors. Whenever a new vector is added to the training data set, unnecessary vectors are found and deleted. So we could easily get an online algorithm. We give the reason we delete unnecessary vectors, provide the computing method to find them. At last, we provide an example to illustrate the validity of algorithm. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISBNs :
9783540259121
Database :
Supplemental Index
Journal :
Advances in Neural Networks - ISNN 2005 (9783540259121)
Publication Type :
Book
Accession number :
32862705
Full Text :
https://doi.org/10.1007/11427391_134