Back to Search Start Over

Methods from Multiscale Theory and Wavelets Applied to Nonlinear Dynamics.

Authors :
Gohberg, I.
Alpay, D.
Arazy, J.
Atzmon, A.
Ball, J. A.
Ben-Artzi, A.
Bercovici, H.
Böttcher, A.
Clancey, K.
Coburn, L. A.
Curto, R. E.
Davidson, K. R.
Douglas, R. G.
Dijksma, A.
Dym, H.
Fuhrmann, P. A.
Gramsch, B.
Helton, J. A.
Kaashoek, M. A.
Kaper, H. G.
Source :
Wavelets, Multiscale Systems & Hypercomplex Analysis; 2006, p87-126, 40p
Publication Year :
2006

Abstract

We show how fundamental ideas from signal processing, multiscale theory and wavelets may be applied to nonlinear dynamics. The problems from dynamics include iterated function systems (IFS), dynamical systems based on substitution such as the discrete systems built on rational functions of one complex variable and the corresponding Julia sets, and state spaces of subshifts in symbolic dynamics. Our paper serves to motivate and survey our recent results in this general area. Hence we leave out some proofs, but instead add a number of intuitive ideas which we hope will make the subject more accessible to researchers in operator theory and systems theory. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISBNs :
9783764375874
Database :
Supplemental Index
Journal :
Wavelets, Multiscale Systems & Hypercomplex Analysis
Publication Type :
Book
Accession number :
32839127
Full Text :
https://doi.org/10.1007/3-7643-7588-4_4