Back to Search Start Over

Ergodic Properties of Reaction-diffusion Equations Perturbed by a Degenerate Multiplicative Noise.

Authors :
Gohberg, I.
Alpay, D.
Arazy, J.
Atzmon, A.
Ball, J. A.
Ben-Artzi, A.
Bercovici, H.
Böttcher, A.
Clancey, K.
Coburn, L. A.
Curto, R. E.
Davidson, K. R.
Douglas, R. G.
Dijksma, A.
Dym, H.
Fuhrmann, P. A.
Gramsch, B.
Helton, J. A.
Kaashoek, M. A.
Kaper, H. G.
Source :
Partial Differential Equations & Functional Analysis; 2006, p45-59, 15p
Publication Year :
2006

Abstract

We extend to a more general class of diffusion coefficients the results proved in the previous work [6] on uniqueness, ergodicity and strongly mixing property of the invariant measure for some stochastic reaction-diffusion equations, in which the diffusion term is possibly vanishing and the deterministic part is not asymptotically stable. We obtain our results by random time changes and some comparison arguments with Bessel processes. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISBNs :
9783764376000
Database :
Supplemental Index
Journal :
Partial Differential Equations & Functional Analysis
Publication Type :
Book
Accession number :
32839110
Full Text :
https://doi.org/10.1007/3-7643-7601-5_3