Back to Search Start Over

N, S co-doped porous carbon derived from waste medical masks to support LaFexCo1-xO3 as highly effective peroxymonosulfate catalysts for degradation of tetracycline.

Authors :
Guo, Li
Chen, Siwei
Jiang, Yue
Ding, Qihan
Yang, Yunfei
Zhi, Jiali
Jia, Youheng
Li, Xiaoli
Source :
Journal of Environmental Chemical Engineering; Oct2024, Vol. 12 Issue 5, pN.PAG-N.PAG, 1p
Publication Year :
2024

Abstract

N and S co-doped porous carbon was prepared by decorating the waste disposable medical masks (WDMM) with thioacetamide (TAA) as the N/S source and then carbonizing at high temperature, which was subsequently incorporated Co-doped LaFeO 3 to obtain NSC@LaFe x Co 1-x O 3 catalysts. The resulting catalysts were used to construct an advanced oxidation process (AOP) based on activation of peroxymonosulfate (PMS) to degrade tetracycline (TC) in water. The physicochemical properties of the as-obtained catalysts were characterized and environmental factors affecting the catalytic performances of NSC@LaFe x Co 1-x O 3 /PMS were systematically investigated. The results showed that N and S co-doped porous carbon derived from thioacetamide (TAA)-functionalized WDMM at high temperature could be used as good support for LaFe x Co 1-x O 3. The synergistic effects between N/S co-doped carbon and polyvalent metals (Co<superscript>2+</superscript>/Co<superscript>3+</superscript> and Fe<superscript>3+</superscript>/Fe<superscript>2+</superscript>) endowed NSC@LaFe x Co 1-x O 3 with enhanced catalytic performances, in which nearly 100% of TC could be removed by NSC@LaFe 0.95 Co 0.05 O 3 /PMS system within 10 min under the conditions of 0.2 g/L of catalyst dose, 2.5 mmol/L of PMS concentration and 10 mg/L of initial TC concentration. Furthermore, the constructed NSC@LaFe 0.95 Co 0.05 O 3 /PMS system exhibited a wider pH adaptability (3.0 ∼ 10.0), good salt resistance and reusability as well as high mineralization. The mechanisms and possible pathways of TC degradation by NSC@LaFe 0.95 Co 0.05 O 3 /PMS system were proposed and the ecotoxicity of TC and its intermediates was also evaluated. This study demonstrated the feasible transformation of waste masks into porous carbon with high added value for water pollution control and remediation, accomplishing the dual purposes of recycling and resource utilization of waste masks and protecting the environment. [Display omitted] • Porous carbon derived from waste disposable medical masks as a carrier for LaFe 0.95 Co 0.05 O 3. • NSC@LaFe 0.95 Co 0.05 O 3 exhibited strong catalytic performances and structural stability. • NSC@LaFe 0.95 Co 0.05 O 3 /PMS with a removal rate of near 100 % in 10 min under optimal conditions. • NSC and polyvalent metals synergistically catalyze PMS to mineralize TC with high efficiency. • Turning waste masks from "waste" into "treasure", and then treating "waste" with "waste". [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
22133437
Volume :
12
Issue :
5
Database :
Supplemental Index
Journal :
Journal of Environmental Chemical Engineering
Publication Type :
Academic Journal
Accession number :
179809710
Full Text :
https://doi.org/10.1016/j.jece.2024.113655