Back to Search Start Over

Large Eddy Simulation of Separated Flows on Unconventionally Coarse Grids.

Authors :
Yuanwei Bin
Park, George I.
Yu Lv
Yang, Xiang I. A.
Source :
Journal of Fluids Engineering; Sep2024, Vol. 146 Issue 9, p1-13, 13p
Publication Year :
2024

Abstract

We examine and benchmark the emerging idea of applying the large eddy simulation (LES) formalism to unconventionally coarse grids where Reynolds-averaged Navier-Stokes (RANS) would be considered more appropriate at first glance. We distinguish this idea from very large eddy simulation and detached eddy simulation, which require switching between RANS and LES formalism. LES on RANS grid is appealing because first, it requires minimal changes to a production code; second, it is more cost-effective than LES; third, it converges to LES; and most importantly, it accurately predicts flows with separation. This work quantifies the benefit of LES on RANS-like grids as compared to RANS on the same grids. Three canonical cases are considered: periodic hill, backward-facing step, and jet in cross flow. We conduct direct numerical simulation (DNS), proper LES on LES grids, LES on RANS-quality grids, and RANS. We show that while the LES solutions on the RANS-quality grids are not grid converged, they are twice as accurate as the RANS on the same grids. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00982202
Volume :
146
Issue :
9
Database :
Supplemental Index
Journal :
Journal of Fluids Engineering
Publication Type :
Academic Journal
Accession number :
179288679
Full Text :
https://doi.org/10.1115/1.4064851