Back to Search
Start Over
Recognizing Off-line Devanagari Handwritten Characters Using Modified Lenet-5 Deep Neural Network.
- Source :
- Procedia Computer Science; 2024, Vol. 235, p799-809, 11p
- Publication Year :
- 2024
-
Abstract
- Recognizing specific characters from a large set of handwritten characters is called off-line character recognition. Devanagari, the reading and writing script, is widely used in a broad region of India. This paper proposes using the modified LeNet-5 architecture for recognizing Devanagari off-line handwritten characters using the Devanagari Handwritten Character Dataset (DHCD). The dataset comprises 46 distinct character classes, each with 2000 images. The proposed modified Lenet-5 Base Architecture (MLCNN8) uses more filters and kernels of small sizes with batch normalization. The proposed modified Lenet-5 Base Architecture (MLCNN8) outperformed the Lenet-5 Base Architecture (LCNN) with an accuracy of 99.21% in 53 epochs, whereas LCNN achieved an accuracy of 94.50% in 48 epochs. Hence, the proposed modified Lenet-5 architecture outperforms the Lenet-5 Base Architecture. The proposed model's results were compared with other state-of-the-art and found that it also has an edge for recognizing the Devanagari handwritten characters. [ABSTRACT FROM AUTHOR]
- Subjects :
- ARTIFICIAL neural networks
Subjects
Details
- Language :
- English
- ISSN :
- 18770509
- Volume :
- 235
- Database :
- Supplemental Index
- Journal :
- Procedia Computer Science
- Publication Type :
- Academic Journal
- Accession number :
- 177603656
- Full Text :
- https://doi.org/10.1016/j.procs.2024.04.076