Back to Search Start Over

High throughput automated characterization of enamel microstructure using synchrotron tomography and optical flow imaging.

Authors :
Guo, Z.
Guillen, D.P.
Grimm, J.R.
Renteria, C.
Marsico, C.
Nikitin, V.
Arola, D.
Source :
Acta Biomaterialia; Jun2024, Vol. 181, p263-271, 9p
Publication Year :
2024

Abstract

The remarkable damage-tolerance of enamel has been attributed to its hierarchical microstructure and the organized bands of decussated rods. A thorough characterization of the microscale rod evolution within the enamel is needed to elucidate this complex structure. While prior efforts in this area have made use of single particle tracking to track a single rod evolution to various degrees of success, such a process can be both computationally and labor intensive, limited to the evolution path of a single rod, and is therefore prone to error from potentially tracking outliers. Particle image velocimetry (PIV) is a well-established algorithm to derive field information from image sequences for processes that are time-dependent, such as fluid flows and structural deformation. In this work, we demonstrate the use of PIV in extracting the full-field microstructural distribution of rods within the enamel. Enamel samples from a wild African lion were analyzed using high-energy synchrotron X-ray micro-tomography. Results from the PIV analysis provide sufficient full-field information to reconstruct the growth of individual rods that can potentially enable rapid analysis of complex microstructures from high resolution synchrotron datasets. Such information can serve as a template for designing damage-tolerant bioinspired structures for advanced manufacturing. Thorough characterization and analysis of biological microstructures (viz. dental enamel) allows us to understand the basis of their excellent mechanical properties. Prior efforts have successfully replicated these microstructures via single particle tracking, but the process is computationally and labor intensive. In this work, optical flow imaging algorithms were used to extract full-field microstructural distribution of enamel rods from synchrotron X-ray computed tomography datasets, and a field method was used to reconstruct the growth of individual rods. Such high throughput information allows for the rapid production/prototyping and advanced manufacturing of damage-tolerant bioinspired structures for specific engineering applications. Furthermore, the algorithms used herein are freely available and open source to broaden the availability of the proposed workflow to the general scientific community. [Display omitted] [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
17427061
Volume :
181
Database :
Supplemental Index
Journal :
Acta Biomaterialia
Publication Type :
Academic Journal
Accession number :
177537336
Full Text :
https://doi.org/10.1016/j.actbio.2024.04.033