Back to Search Start Over

Mechanical performance and deformation mechanisms of ultrastrong yield strength Fe-Cr-Ni-Mn-N austenitic stainless steel at 4.2 Kelvin.

Authors :
Xin, Jijun
Zhang, Hengcheng
Lyu, Bingkun
Liang, Panyi
Boubeche, Mebrouka
Shen, Fuzhi
Wang, Wei
Sun, Wentao
Shi, Li
Ma, Ruinan
Shan, Xinran
Huang, Chuanjun
Li, Laifeng
Source :
Journal of Materials Science & Technology; Aug2024, Vol. 189, p191-202, 12p
Publication Year :
2024

Abstract

• The Fe-Cr-Ni-Mn-N austenitic stainless steel exhibits an exceptional mechanical property at 4.2 K with a high yield strength of 1.5 GPa. • The deformation nanotwinning, HCP ε-martensite transformation, dislocation slip with L -C locks and stacking fault formation which provided a marked contribution to the Fe-Cr-Ni-Mn-N alloy's ultrahigh strain hardening rate and outstanding strength at liquid helium temperature 4.2 K. • The Fe-Cr-Ni-Mn-N austenitic stainless steel displays outstanding cryogenic mechanical properties through a progressive synergy of deformation mechanisms leading to exceptional strength which provides a new insight into the commercialized development of high-performance alloys for cryogenic applications. We report the mechanical performance and microstructural characteristics of a Fe-Cr-Ni-Mn-N alloy at cryogenic temperatures. The exceptionally high yield strength of 1.5 GPa combined with a high strain-hardening rate and no deterioration in ductility at 4.2 K was displayed. The evolution of deformation microstructure was examined using electron backscatter diffraction (EBSD), the transmission Kikuchi diffraction (TKD), high-resolution transmission electron microscopy (HRTEM), and aberration-corrected scanning TEM (STEM). The deformation microstructure mainly consisted of dislocation slip with L -C locks, {111} stacking fault formation, {111} deformation nanotwinning, and FCC → HCP shear transformation at 4.2 K. The occurrence of FCC-HCP shear transformation inside/near {111} twins to form γ-γ tw -ε dual-phase structure induces a dynamic Hall-Petch effect that promotes the strain-hardening rate and enhances the strength-ductility combination. We believe that this alloy displays outstanding damage tolerance through a progressive synergy of deformation mechanisms leading to exceptional strength which provides a new insight into the commercialized development of high-performance alloys for cryogenic applications. [Display omitted] [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
10050302
Volume :
189
Database :
Supplemental Index
Journal :
Journal of Materials Science & Technology
Publication Type :
Periodical
Accession number :
177372388
Full Text :
https://doi.org/10.1016/j.jmst.2023.12.027